સાબિત કરો કે :  $ 2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S.$ $=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}$

$=2 \cos \frac{\pi}{3} \cos \frac{9 \pi}{13}+2 \cos \left(\frac{\frac{3 \pi}{13}+\frac{5 \pi}{13}}{2}\right) \cos \left(\frac{\frac{3 \pi}{13}-\frac{5 \pi}{13}}{2}\right)$

$\left[\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)\right]$

$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \left(\frac{-\pi}{13}\right)$

$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}$

$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}$

$=2 \cos \frac{\pi}{13}\left[\cos \frac{9 \pi}{13}+\cos \frac{4 \pi}{13}\right]$

$=2 \cos \frac{\pi}{13}\left[2 \cos \left(\frac{\frac{9 \pi}{13}+\frac{4 \pi}{13}}{2}\right) \cos \frac{\frac{9 \pi}{13}-\frac{4 \pi}{13}}{2}\right]$

$=2 \cos \frac{\pi}{13}\left[2 \cos \frac{\pi}{2} \cos \frac{5 \pi}{26}\right]$

$=2 \cos \frac{\pi}{13} \times 2 \times 0 \times \cos \frac{5 \pi}{26}$

$=0=R . H . S.$

Similar Questions

જો $p = \frac{{2\sin \,\theta }}{{1 + \cos \theta + \sin \theta }}$, અને  $q = \frac{{\cos \theta }}{{1 + \sin \theta }},$ તો

$7\,cm$ ત્રિજ્યાવાળા વર્તુળાકાર વાયરને કાપી તેને $12cm$ ત્રિજયાવાળા વર્તુળ પર બેસાડવામાં આવે તો તેને કેન્દ્ર આગળ આંતરેલો ખૂણો.......$^o$ મેળવો.

જો  $x = \sec \theta + \tan \theta ,$ તો  $x + \frac{1}{x} = $

$\cos 15^\circ = $

જો $\tan \theta + \sin \theta = m$  અને $\tan \theta - \sin \theta = n,$ તો

  • [IIT 1970]