સાબિત કરો કે : $ 2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$
$L.H.S.$ $=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}$
$=2 \cos \frac{\pi}{3} \cos \frac{9 \pi}{13}+2 \cos \left(\frac{\frac{3 \pi}{13}+\frac{5 \pi}{13}}{2}\right) \cos \left(\frac{\frac{3 \pi}{13}-\frac{5 \pi}{13}}{2}\right)$
$\left[\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)\right]$
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \left(\frac{-\pi}{13}\right)$
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}$
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}$
$=2 \cos \frac{\pi}{13}\left[\cos \frac{9 \pi}{13}+\cos \frac{4 \pi}{13}\right]$
$=2 \cos \frac{\pi}{13}\left[2 \cos \left(\frac{\frac{9 \pi}{13}+\frac{4 \pi}{13}}{2}\right) \cos \frac{\frac{9 \pi}{13}-\frac{4 \pi}{13}}{2}\right]$
$=2 \cos \frac{\pi}{13}\left[2 \cos \frac{\pi}{2} \cos \frac{5 \pi}{26}\right]$
$=2 \cos \frac{\pi}{13} \times 2 \times 0 \times \cos \frac{5 \pi}{26}$
$=0=R . H . S.$
જો $p = \frac{{2\sin \,\theta }}{{1 + \cos \theta + \sin \theta }}$, અને $q = \frac{{\cos \theta }}{{1 + \sin \theta }},$ તો
$7\,cm$ ત્રિજ્યાવાળા વર્તુળાકાર વાયરને કાપી તેને $12cm$ ત્રિજયાવાળા વર્તુળ પર બેસાડવામાં આવે તો તેને કેન્દ્ર આગળ આંતરેલો ખૂણો.......$^o$ મેળવો.
જો $x = \sec \theta + \tan \theta ,$ તો $x + \frac{1}{x} = $
$\cos 15^\circ = $
જો $\tan \theta + \sin \theta = m$ અને $\tan \theta - \sin \theta = n,$ તો